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We consider a classical system, in a v-dimensional cube D, with pair potential of the 
form q(r) 4- V~(yr). Dividing .(2 into a network of cells ~ol, ~o2 ,..., we regard the system 
as in a metastable state if the mean density of particles in each cell lies in a suitable 
neighborhood of the overall mean density p, with p and the temperature satisfying 

fo(P) 4- �89 ~ > f(P, 04-) 

and 

f0"(P) 4- 2c~ > 0 

where f (p,  04-) is the Helmholz free energy density (HFED) in the limit ~, --~ 0; c~ = 
J" ~b(r)d~r; and fo(p) is the HFED for the case 'b = 0. It is shown rigorously that, for 
periodic boundary conditions, the conditional probability for a system in the grand 
canonical ensemble to violate the constraints at time t > 0, given that it satisfied them 
at time 0, is at most At, where 2~ is a quantity going to 0 in the limit 

Here, r0 is a length characterizing the potential q, and x >> y means x/y-+ 4- oo. 

For rigid walls, the same result is proved under somewhat more restrictive conditions. 
It is argued that a system started in the metastable state will behave (over times ~ ,~-1) 

10r 2 like a uniform thermodynamic phase with HFED Jo(p) 4- ~ p ,  but that having once 
left this metastable state, the system is unlikely to return. 
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t .  I N T R O D U C T I O N  

In this paper, we investigate a general method for describing metastable states in 
statistical mechanics and we apply it rigorously to the generalized van der Waals 
system whose stable states we discussed in an earlier paper, (z) hereafter referred 
to as I. Our analysis will include both static and dynamic properties and goes 
considerably further than our preliminary results (2) presented earlier for these systems) 

Nature provides many examples of metastable states(4); they include supercooled 
vapors and liquids, supersaturated solutions, and ferromagnets in the part of the 
hysteresis loop where the magnetization and the applied magnetic field are in opposite 
directions. They can arise when some thermodynamic parameter of the system, such 
as the temperature or magnetic field, is changed from a value for which the stable 
equilibrium state has a single thermodynamic phase, to one for which it has at least 
part of the system in some new thermodynamic phase. Instead of making the appro- 
priate phase transition, however, the system may go over continuously into a one- 
phase state, called a metastable state, which appears, while it lasts, to be stationary 
in time in the same manner as a stable equilibrium state. The properties of the metas- 
table state are found to be reproducible; that is, they appear to be completely deter- 
mined by the values of the thermodynamic parameters, in just the same way as those 
of a stable equilibrium state. The distinguishing feature of a metastable state is that, 
eventually, either through some external disturbance or a spontaneous fluctuation 
which nucleates the missing phase in some small part of the system,the system begins 
an irreversible process which leads it inexorably to the corresponding stable equili- 
brium state. Thermodynamically, the irreversibility of this transition corresponds to 
a decrease in free energy or an increase in entropy. 

In this paper, we shall characterize metastable thermodynamic states by the 
following properties: 

Only one thermodynamic phase is present (la) 

A system that starts in this state is likely to take 
a long time to get out (lb) 

Once the system has gotten out, it is unlikely to return (lc) 

To (1), one might add the statement that thermodynamics applies to the metas- 
table state--for example, the usual theory would apply if a substance in such a state 
were taken around a Carnot cycle--but beyond showing, in passing, how analogs for 
some of the thermodynamic functions such as the free energy can be defined for the 
metastable state, we shall not treat this topic in detail. 

In statistical mechanics, there are several approximate theories giving metastable 
equilibrium states instead of, or in addition to, the stable ones. One of these is the 
van der Waals-Maxwell theory of the liquid-vapor transition. In this theory, an 
approximation which treats the system as a uniform fluid phase leads (at some suitable 
fixed temperature T) to a relationship between f ,  the Helmholtz free energy per unit 
volume, and p, the density, whose graph has the general character shown in Fig. 1. 

For related work, see the references cited in I, as well as Refs. 3a-d. 
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Fig. 1. 
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Helmholz free energy density in the van der Waals-Maxwell theory. 

This figure also shows a dashed straight line touching the curve at two points A and 
D. The points on this line correspond to two-phase states, one phase (the vapor) 
having density Ov, the other (the liquid) having density p~. Maxwell 15) saw that for 
densities between p~ and p~ the stable equilibrium states would be the two-phase 
states, but thought that, by careful experimentation, it should also be possible to 
realize experimentally the parts of the curve labeled AB and CD; these describe the 
one-phase metastable states. The part of the curve between the inflection points B 
and C is impossible to realize because it has d2f/dp ~ < 0, so that the states it describes 
are mechanically unstable. 

Although van der Waals' approximate theory gives the metastable states easily, 
it is more difficult to see how they could arise in an exact theory; for it follows from 
the general principles of statistical mechanics <6~ that in the thermodynamic limit the 
exact free energy density, calculated from the partition function, is a convex function 
of p and therefore cannot give arcs such as AB and CD, which do not lie on a convex 
curve. To obtain the metastable states, some extension of the usual formalism of  
statistical mechanics is necessary. 

One possibility, suggested by the preceding example, is that the thermodynamic 
functions for the metastable states can be obtained by extrapolation from the nearby 
stable one-phase states, so that, for example, the arc AB in Fig. 1 would be obtained 
by extrapolation from the curve to the left of A. It is likely, however, that for real 
systems, for which van der Waals' theory is only an approximation, a singularity of 
the thermodynamic functions blocks the extrapolation(7); and even when the extra- 
polation is possible, one still has to justify the assumption that the extrapolated 
thermodynamic functions really describe metastable states. 

In addition to these static properties, the dynamics of the persistence and decay 
of the metastable state also deserve investigation. Some of the basic ideas underlying 
this dynamics are already contained in Maxwell's own discussion: Maxwell recognized 
the importance of nucleation; he saw that to set up the metastable state we must be 
sure that none of the new phase is present. The idea of nucleation was developed 
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further by Becker and D/Sring, (4,8~ who used quasithermodynamic arguments involving 
the surface tension to find the smallest "liquid droplet" in a supersaturated vapor 
that will "grow" to become the new liquid phase. For droplets smaller than this 
minimum size, the "free energy" increases with size and hence they will tend to 
dissipate. Using the Einstein relation between probability and free energy and some 
kinetic arguments about the rate of collisions between molecules and droplets which 
might lead to an increase in the size of the latter, the Becker-D/Sring theory gives an 
estimate for the probability of forming such a critical droplet in the homogeneous 
supersaturated phase. This probability is found to be extremely small (for some values 
of  the temperature and pressure), which explains the metastability of the supercooled 
vapor. The basic ideas of this theory have been used with great success by many 
authors for a wide variety of phenomena. 4 

Despite their successes, however, these theories suffer from the lack of a precise 
formulation of the problem. It is never entirely clear just what, if any, exact quantity 
one is trying to compute approximately and the computations are of necessity approxi- 
mate. That this is not purely an aesthetic defect can be seen from the recent contro- 
versy about a factor of 1017 in the spontaneous nucleation rate of supersaturated 
vapor.~9~ A more fundamental approach is therefore necessary. 

In addition to avoiding these difficulties, a more fundamental approach could 
also yield information about nonthermodynamic quantities such as correlation 
functions, which can be measured by scattering experiments. It is our purpose here to 
develop such an approach, which will make precise the ideas discussed earlier and 
use it to carry out computations for the static and dynamic properties of metastable 
states of generalized van der Waals fluids. 

We begin by making precise the notion, inherent in all the previous discussion, 
of imposing a restriction on the system which keeps its density roughly uniform. In 
general, such a restriction may be represented by confining the configuration of the 
system to a suitable region R in configuration space. In order for this region to cor- 
respond to a mestastable state, the restrictions defining it should correspond to the 
imposition of a roughly uniform density, in accordance with the criterion (la), and 
it should also have properties corresponding to the conditions (lb) and (lc) mentioned 
earlier: If  the dynamical state is initially in R, it is unlikely to escape quickly, and 
once it has escaped, it is unlikely to return. 

To compute the conditional probabilities implicit in (lb) we shall, as is usually 
done in statistical mechanics, use the Gibbs ensemble method. We assume that the 
conditional probabilities can be computed from an ensemble made up by taking an 
equilibrium ensemble and selecting from it at time 0 all those systems whose con- 
figurations are in R. We call this ensemble a restricted equilibrium ensemble. The 
conditional probability p(t) of the configuration being outside R at time t is then 
equal to the fraction of the members of this subensemble that are no longer in R at 
time t. The question now arises, "From what kind of equilibrium ensemble should 

4 See Ref. 4. We also have in mind the study of the decay of superconducting currents and of 
superfluid flows by the nucleation of vortices as well as the creation of defects in solids and other 
phenomena that require "activation energies." 
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our restricted subensemble be chosen, e.g., should it be microcanonical, canonical, 
or grand-canonical ?" (For the microcanonical or canonical ensembles, R would be a 
region in the configuration space of some given number N of particles, while for the 
grand canonical ensemble, R will consist of a union of regions from configuration 
spaces of different dimensions.) All these (and other related ensembles) are thermo- 
dynamically equivalent, i.e., they are equally suitable for computing the equilibrium 
thermodynamic properties of very large systems. ~ This is, however, not necessarily 
true for properties of the metastable state obtained from the corresponding restricted 
ensembles. We do not attempt here to give rigorous proofs of equivalence of these 
different restricted ensembles. Instead we carry out our main computation 
(Sections 3-6) in the restricted grand canonical ensemble, where the results are 
easiest to prove, and then give some evidence (Sections 7-8) for expecting similar 
results in the canonical ensemble formalism. 

The grand canonical ensemble is actually used only for setting up the restricted 
ensemble at time 0; it does not imply that the system is open for times >0. The 
dynamics of the system are assumed to be determined entirely by its own Hamiltonian 
(no interaction with the outside). Hence, the probability p(t) calculated using the 
restricted grand canonical ensemble, characterized by a certain chemical potential/~ 
and temperature T, is a weighted average of the corresponding probabilities calculated 
in restricted microcanonical ensembles characterized by various energies and particle 
densities. 

To avoid the complications arising from the walls of the container, where nuclea- 
tion of the new phase may proceed at a different rate from that in the bulk liquid, 
we shall do our main calculations for a system with periodic boundary conditions. 
The escape rate we estimate will therefore be the homogeneous nucleation rate, 
proportional to the volume of the system. The effect of walls, which is a special case 
of the nucleation of a new phase at the surface of a foreign substance, will be discussed 
in Section 6. We shall find that perfectly elastic walls do not facilitate the formation of 
liquid droplets in a supercooled vapor but may play an important role in serving as 
loci for the formation of vapor cavities in superheated liquids. A similar effect is 
observed for real walls. ~) 

This treatment of metastable states hinges on finding a suitable region R in 
configuration space. The ideal choice would, perhaps, be the one minimizing the 
escape rate--that is, the probability per unit time for the configuration of the system 
to move out of R. In this paper, however, we shall not attempt the difficult task of 
optimizing the region R. Instead, we shall make our choice on physical grounds and 
show that this choice leads to a very small escape rate (so that the minimum escape 
rate must be at least as small). 

2. D E S C R I P T I O N  O F  T H E  H O D E L  

Apart from the boundary conditions, the system we shall investigate is the same 
as in I: a classical system of identical particles, each with mass m, interacting by a 
pair potential v(r) of the form 

v(r) = q(r) -1- ~q~(~r), 0 ~< r < oe (2) 
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where v is the number of space dimensions and • is a positive quantity whose reci- 
procal is a measure of the range of the "Kac potential" ~,"~(7r). 

The functions q and 4, are assumed to satisfy the conditions 

q ( r ) =  + ~  if r < r o  
(3) 

I q(r)E ~ D r  . . . .  if r > r 0  

--Dr . . . .  ~ q~(r) ~< 0 fbr all r (4) 

where r means ] r I, and r0, D, and E are positive constants. Thus, we require q to 
have a hard core and q~ to be nonpositive. In addition, we require the function q to be 
integrable for r > ro, and we also require ~ to be continuous at r = 0 and 

= f ~(r)d~r (5) 

to exist as a Riemann integral. The value of this integral is nonpositive. 
For  the reasons stated in the introduction, we first use periodic boundary con- 

ditions, with a cubical unit cell [2. A formal specification of these boundary conditions 
corresponding to their usual definition is given by Fisher and Lebowitz31~ Their 
work implies that, under the conditions (3) and (4), the thermodynamic limit of the 
free energy density is the same for periodic boundary conditions as for the hard-wall 
boundary conditions used in I. At any given temperature T, this limit for the 
Helmholtz free energy density [denoted here by f(p, 7), though in I it was denoted 
by a(p, 7)] exists for every positive 7 and every density p in the range 0 < p < pc~ 
where p~ is the close-packing density for hard spheres of diameter r0 �9 It was shown 
in I that this free energy is given, in the limit 7 ~ 0, by 

f(p, 0+) -= Proof( p, y) = CE[fo(p) + �89 (6) 

Here, fo(P) denotes the free energy of the reference system, that is, the system whose 
interaction potential function is q instead of v, and the symbol CE indicates the convex 
envelope of the expression following it, i.e., the value of the maximal convex function 
whose value nowhere exceeds fo(P) + �89 Since c~ ~ 0, the function fo(P) + �89 
need not be convex even thoughfo(p) must be. In Fig. 1, the smooth curve is the graph 
off0(p) -k �89 whose convex envelope is obtained by replacing the arc ABCD by the 
corresponding double tangent AD. 

The parts of the curve in Fig. 1 which Maxwell associated with metastable states 
are the arcs AB, CD; these may be specified by the conditions 

fo(p) + �89 > f(p, 0 + )  (7a) 

and 

fo(P) + ~ > 0 (7b) 

wherefg denotes the second derivative of f0 ,  is assumed continuous. In this paper, we 
shall prove a result supporting Maxwell's point of view: We shall show that a con- 
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figuration-space region R having the properties we have earlier used to characterize 
metastable equilibrium can be defined at density p if 

fo(P) 4- �89 > f(p ,  O-b) (8a) 
and 

fo(P) + 2a >- 0 (8b) 

Since c~ is negative, this is a more restrictive condition than (7). An example is provided 
by the Kac-Uhlenbeck-Hemmer Ill) model, which obeys van der Waals' equation of 
state. For this model, the criteria (8a, b) can be satisfied if T < 0.76T~ for a range of 
densities of the form p~(T) < p < pI(T), where p~(T) is the density of the vapor 
(which is 0.0647p~ if T = 0.76Tr Here, T~ is the critical temperature and p~ the 
close-packing density (the critical density is �89 In addition, if T < 0.44T~, there 
is a second range of densities of the form p2(T) < p < p~(T), where p~(T) is the density 
of the boiling liquid (which is 0.748p~ if T = 0.44T~), for which the criterion is 
satisfied. These two ranges of density correspond respectively to superheated vapor and 
supercooled liquid. 

As mentioned in the introduction, we shall do our calculations using a restricted 
grand canonical ensemble, that is, one constructed by selecting from a grand canonical 
ensemble those systems whose configuration is in R. The chemical potential of this 
grand canonical ensemble is related to p by the analog of the formula/x = (~f/~p)r : 
that is, by 

I x = d[fo(p) + �89 
(9) 

= fo'(p) + ~p 

We shall show later (Section 7) that this choice of / ,  ensures that nearly all the systems 
in the ensemble have mean densities very close to O. 

To define our phase-space region, we divide the unit cell D into cubical subcells 
co x , w~ ,..., OJM, each of volume I oJ j ,  so that the total volume ] D I of the unit cell is 
equal to M]  co ]. For  brevity, we shall also refer to these subcells as "cells." We 
define the dynamical variable ni ,  i = 1 ..... M, to be the number of particles in oJ~, 
and we choose two numbers p- and p+ such that p- < p < p+ and the condition 

fo'(x) + 2~ > const > 0 (10) 

holds for all x ~ [p-, p+]. Such a choice must be possible, by (8a, b) and the assumed 
continuity o f f 0 ,  but the precise values of p- and p+ chosen are unimportant. In 
particular, they may be arbitrarily close to p. In accordance with the condition (la), 
that the metastable state should correspond to a single thermodynamic phase, we 
now define R to be the set of all configurations compatible with the M constraints 

p - l o ~ l c n i < p + l ~ o l ,  i = 1 , 2  ..... M (11) 

In I, we evaluated the thermodynamic functions by using a triple limit process 
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where first I/2 I --~ oo, then y --* 0, and finally l ~o I --+ oo; this process can be represen- 
ted by the inequalities 

I ~2 I >~ 7-~ I co I >~ r0 v (12) 

where x >~ y is to be interpreted as x/y ~ q- oo. 
Here, to deal with metastable states, we shall use a different limit process which can 
be represented by the inequalities 

I f2 />~  y-~>~ ]co [ >~ r0~ln I D I (13) 

This system of inequalities looks very similar to (12), but it is very different mathe- 
matically; because of the in I/2 [ at the right, we can no longer take the limits of very 
large I .(2 ], ),-~, and I co I one at a time but must instead take them all together (in 
such a way that I ~Q I ~ ,  Y-~/I w i , and I co ]/rov In I ~Q I all become very large). 

In the rest of this paper, we shall use a standard notation of analysis and denote 
limits of this type as follows: 

x----o(1) to mean l i m x = 0  
(14) 

x = I co I o(1) or x = o(I co I) to mean lim(x/I co I) ----- 0 

The main result proved in this paper is an upper bound on the rate of escape from 
the set of configurations defined by (11) which implies that 

(escape rate) 

That is, by suitable choice of] Y2 ], y, and I co 
as we please. 

= o(1)  (15)  

I, we can make the escape rate as small 

The importance of the condition y-~ >~ [ co ] here is that the restriction (11) 
imposes uniform density on a length scale ] o~ I1/% which is small enough to prevent 
the formation of any droplets of the new phase with size >~ 7 -1. Since the range of the 
potential responsible for the transition is 9, -1, one would expect that a droplet of at 
least this size would be necessary to nucleate the growth of the new phase, whose 
density is well outside the range [p-, O+]. We therefore expect the system also to be 
uniform inside each cell coi even though this is not required by (11), which would 
permit the coexistence of both phases inside any cell. This expectation is supported 
by the fact, which we shall demonstrate in Section 7, that the Helmholtz free energy 
density of the metastable state as computed from ensembles confined to R (defined in 
Section 1) is given in the (13) limit by fo(p) 4- �89 By Eq. (7a), this free energy 
density is greater than the stable equilibrium free energy density given in (6), which, 
as Fig. 1 indicates, is a weighted average of the free energy densities of two phases 
f (p~,  0 + )  andf(p~,  0+) ,  and hence corresponds to a two-phase state. 

Our interpretation of (11) as restricting the system to a single phase could be 
strengthened by calculating the Ursell functions for the metastable state and showing 
that, in the limit described by (13), they have the cluster properties which characterize 
a single phase. (6) This can be shown, in a nonrigorous way, by calculating the metas- 
table distribution functions using the method of Section 6 of I. For stable equilibrium, 
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on the other hand, this method showed in I that the pair distribution function for 
values of p satisfying (7a) is, like the free energy, a weighted average of the correspon- 
ding pair distribution functions at densities p, and p~ and hence that the two-particle 
Ursell function does not have the cluster property. We shall not go further into this 
question here. 

3. E S T I M A T I O N  OF T H E  ESCAPE RATE 

In this section, we describe some general principles for estimating the probability 
of the system escaping from the region R of configuration space by a spontaneous 
fluctuation leading to nucleation of the new thermodynamic phase. Let us denote by 
p(t) the conditional probability that a system that is in metastable equilibrium (defined 
in terms of the region R) at time 0 has escaped from it by time t, where t >/0. As 
explained in the introduction, we shall calculate this probability by considering a 
grand canonical ensemble, selecting from it all the systems that at time 0 have 
dynamical states in R and computing the fraction of the members of this subensemble 
that are no longer in R at time t. 

The fraction of members of this ensemble that at time t have N particles and are 
in an elementary volume dX near the point X in N-particle phase space will be denoted 
by r X), so that we have (using units such that Planck's constant is 1) 

const �9 (NO -1 e ["x-H(x)]/kT for X E/) 
Co(N, X) = 0 for X q~/) (16) 

where /) denotes the phase-space region comprising all phase-space points that 
correspond to configurations in R, and H is the Hamiltonian. The choice of/z  is 
discussed in Section 2. Assuming that the systems in the ensemble are isolated, we 
can calculate the time evolution of r X) by Liouville's theorem, obtaining 

~t(N, X) = 0 or const �9 (N!) -1 e["~e-H(X)]/kr (17) 

for all phase points X, so that 

r  ~< r if X e / )  (18) 

Let us denote by 8/) the set of all dynamical states of systems that will escape 
f r o m / )  during the next 8t seconds: that is, 

81)={X: X ~ / )  and U~tX~I~} 

where Ut is the time evolution operator. The probability that the system is in R at 
time t and leaves it during the time interval It, t + St] is 

p(t + 8 0 --p(t)  = f,~ Ct(X)dX 

and by (18) this satisfies 

p(t + St) -- p(t) < J ~ Co(X) dX -- p(St) (19) 
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[since p(0) = 0]. Dividing by St and taking the limit St --~ O, we obtain 

dp(t)/dt ~ (dp(t)/dt)~=o+ (for t > O) (20) 

so that the rate of increase of p(t)  is a maximum when t = O. We shall call this 
maximum the rate o f  escape from the metastable state described by R and denote it by h. 

To obtain a method of estimating ;~, we use the definition (11) of R, which gives 

p(t) ----- probt{ni ~ p-t  to[ or n i >~ p+lto[  or 

ng < p-  l to [ o r . . . o r  nM >J P+ l to l} 

<~ prob~{nl ~< P-I to I} -}- prob~{n~ >~ P+lto ]} + "'" -t- prob~{n/ ~> p+lto 1} 

(21) 

by a standard inequality of probability theory. Here, prob~(A) means the probability 
of A being true at time t. 

It follows that 

= limsup t-~p(t) <~ (b + + b-) M (22) 

where 

b a = M.ax  lira sup t -1 probt{ni ~ p~ I to t} 
z 

(23) 

since the sum (21) has M terms of each of the two types. (With periodic boundary 
conditions, the probabilities in (23) are actually independent of i, but we write the 
formula in this way so that it can also be used for rigid-wall boundary conditions.) 

We only consider here the problem of estimating b +, but the method for b- is 
completely analogous. For very small 3t, the system will leave R during the time 
interval [0, St] by breaking the restriction ni < p+ I to I if and only if the following 
conditions are satisfied at time 0: 

Event (A): p- I to I < nr < p+l to [, j = 1 ..... i -- 1, i + 1,..., M (24a) 

Event (B): n~ < p+ I to [ ~ ni + 1 (24b) 

Event (C): A particle is approaching the boundary oftoi from outside at a distance 
less than 8t times its component of velocity perpendicular to this 
boundary 

(This is because, for very small St, we can neglect possibilities such as two or more 
particles entering tot during St, or one entering and one leaving, or the prospective 
entrant being deflected by a collision.) By the multiplication rule for conditional 
probabilities, b + is thus the maximum over i of the quantities 

lim sup prob(B)[prob(C ] B)](St) -1 (25) 
~t-*0 

both probabilities being calculated in the ensemble defined by (16), so that in effect 
both are conditional upon the event (A) that the dynamical state of the system belongs 
to/ ) .  
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The estimation of prob(B) will be tackled in the next section. All we need to note 
here is that it does not depend on St. The event (C), on the other hand, does depend on 
St, and its probability (neglecting terms of order smaller than 80 may be written, 
using the Maxwellian velocity distribution and taking a coordinate system with the 
first of its v axes perpendicular to the relevant boundary of o~,  

(2rrmkT)-~/2 f dvz f dv~ "" f dv, e x p ( - - I v  12/2mkT) 
~ ~ c l o  - r x o  

• f d~-Zr [(/71 St) p~+(r)] (26) 
Oco i 

where v, ..... v, are the components of velocity, aw~ represents the boundary of  oo~, 
and p~+(r) represents the mean number density, conditional on the events (A) and (B), 
just outside the cell eoi, at the point r on ~o~. It follows from (26) that 

lim (St) - l p ( C I B )  = (kT/2rrm) 1/2 f d~-l r p~+(r) 
8t-~O O~oi 

(27) 
<~ (kT/Zrrm) 2v I co Iz-~/" pmax 

where 
pmax = sup p(r) (28) 

Combining (27) with (25), we obtain 

b + ~ (kT/2rrrn)l/~ 2v 1 co IZ-Z/" pmax{Maxi prob(ni < p+ I co I ~ n~ -? 1)} (29) 

A similar calculation holds for b- and so, by (22), we conclude that 

h <~ M(kT/2rrm) 1/2 2v 1 c o  [1-1/v pmax{Max~ prob(ni = n + or n-)} (30) 

where n + and n- are the integer solutions of 

n+ < p + ]  co I ~ < n + + l  
(31) 

n - > p - ]  co [ > ~ n - - - 1  

An important feature of the estimate (30) of the escape rate is that it contains the 
factor M, which is proportional to the size of the system. This corresponds to the 
physical fact, noted in the introduction, that the homogeneous rate of nucleation is 
proportional to the volume of the system. For this reason, we cannot hope to show 
that A is small in the thermodynamic limit. We shall, however, show that it is vanish- 
ingly small in the special limit defined in (13), where [ ~ [, y-L and [ co I all tend to 
infinity together. The main technical problem is to obtain an upper bound on 
prob(ni = n + or n-). For  our periodic system, where prob(ni = n + or n-) is 
independent of i, a suitable bound will be obtained in the next section. For  systems 
confined by rigid walls, prob(ni = n + or n-) will have the same small bounds for 
oJ~ in the "interior" of the system but may be large for cells near the walls, and if so, 
our treatment based on (22) has to be modified. This is done in Section 6. 
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4. T H E  P R O B A B I L I T Y  OF BE ING A T  T H E  EDGE OF R 

To complete our estimate of the escape rate A, we now estimate the last factor in 
the upper bound (30), representing the probability that the ith cell contains exactly 
n + or n- particles at t = 0. Because of the periodicity, all cells are equivalent; we have 
therefore worded our discussion for a cell co~ far from the surface of 12. In this section, 
we concentrate on estimating the probability of finding n + particles in o~ ; the estimate 
for n- is analogous. 

Let p~(n) denote the probability of finding exactly n particles in the ith cell. Then, 
the quantity we wish to estimate is p~(n+). Let T'i be the complement of coi in D, 

Fi = 12 -- ~oi (32) 

and let ~/denote any configuration of/ '~ and p~(n I ~7) the conditional probability that 
exactly n particles are in ~o~, given that the configuration of F~ is ~/, i.e., ~7 stands for 
the set of coordinates (rz ..... rs), rj ~ Fi,  and N ~ {0, 1,...}. We then have 

p,('+) = Z f pi(n+ 1 7) (33) 
N ~ 

where qN(~) d~/is the probability that the configuration ~ of r'i consists of N points 
located in the element d~ 7 of the N-particle configuration space and the integration is 
carried out over F. The probability is obtained from the ensemble defined in Section 3. 
A convenient way to estimate p~(n +) is to compare it with the probability p~(~) for 
some suitably chosen integer fi in the range [n-, n+]. This gives 

where 

pi(n+) = [ [p,(,+ I v)/pi(  1 7)lpi(  ] 7) 
N ~ 

~< ~ f Pi(g I ~7) qu(~7) d~ sup [p~(n + ] ~)/Pi(g ] 7)] 

= p~(~) sup [p~(n + [ ~l)/Pi(n I "q)] <~ sup [pi(n + I rl)/Pi(fl [ "q)] 

= sup [Q~(n + ]~7)/Qi(~I~l)] 
7) 

(34) 

Qi(n[v)=~(e,~/kl /n!)A- 'n~ . . . f  d~r l . "d~rne  -v/~r (35) 
co i co i 

where A =- (27rmkT) -1/2 is a factor arising from the momentum integrations, and V 
is the potential energy of the configuration {rl ,..., r~, ~7}. 

Writing ~: for rl ,..., r~, the configuration o)i, we can split the potential energy V 
in (35) into various parts 

V = V(~) q- F(V) § V(~:, ~7) (36) 

where V(~:) is the interaction of the particles in o)i with each other, V(~:, ~7) is that of 
the particles in col with those in / '~ ,  and so on. (The extra interactions coming from 
the periodic boundary conditions are also included in each of these terms.) 
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Using (36) in the definition (35) of  Q~(n, ~7), we can write 

Qi(n ] ~) = e""/~'rZg(n l ~7) 

where 

(37) 

Zi(n I ~7) = (A-vn/n!) f ~i "'" f~, df  e-EV(e,+v,e,,,)J/kr (38) 

is the part i t ion function for  n particles confined to the cell coi and moving  in an 
external field whose potential  at r is 

v(r, r ' )  (39) 

Substituting (37) into the right side of  (34), we obtain 

Oi(n + I ~7)lOi(n- ] ~) = [Zi(n + I~)/Zi(n-I ~)] exp[/~(n + - n-)/kT] (40) 

T o  estimate Zi(nI 7), we use some of  the results f rom I. We deal separately 
with the long-range and short-range contr ibut ions to the external potential  (39). The 
long-range contr ibut ion is given approximate ly  by 

ni ~ nw(ki:) (41) 
J 

cojeF t 

where w(r) ~ y"c~(;r and ki: is the vector  f rom the center of  coi to that  o f  co:. The  
error  in this approx imat ion  is at mos t  

ni ~ nmax [ Max  w(r - -  r ' )  - -  Min w(r - -  r')[ , r ~ coi, r '  ~ coj (42) 
J 

Where nm~x is the largest possible number  of  particles in a cell. The methods  used in I 
to est imate sums like (41), based on the Riemann-integrabi l i ty  of  ~b, show that  the 
coefficient of  n~ in this error  bound  approaches  zero as y - ~  0, and hence that  the 
error  itself is o(I co I). 

To  estimate the short-range contr ibut ion to (39), we consider the upper  and lower 
bounds  separately, just  as we did in I. Fo r  an upper  bound  on this potential ,  we can 
follow the method  used to prove  (2.9) o f  I and show that  if the points r 1 .... , r~ are all 
confined to a cell coi', concentric with co~ but  smaller, then tbeir short-range inter- 
act ion energy with the rest o f  the system is at most  

DninmaxJ~t . . . .  (43) 

where J~ is the constant  defined in (2.10) of  I and t is defined by (see Fig. 2) 

t = ]co [~/~ - -  ]co' [~/~ (44) 

If, in taking the (13) limit, we relate t to I co ] in such a way that  [ co ] t - " - '  --> 0, then 
the upper  bound  (43) is o(1 co ]). This upper  bound  gives us a lower bound  on the 
cell par t i t ion function Zi(n I ~1); it is, by (38), (41), and (43), 

Zi(n l ~7) >~ exp[--F0(n, co') -- n ~ n:w(kij) + o(I co I)]/kT (45) 
3 
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Fig. 2. Specification of  cells co and co'. 

where 

t A - v n  "'" e -  v(~)k/r i (46) 

is the free energy of n particles confined to the inner cell w~'. 
For a lower bound on the short-range contribution to V(~:, ,/), we use the method 

that led in I to (4.8) and (4.9), obtaining the bound 

- -  D n i n m a x J f l - ~ - ,  - -  neorr~b (47) 

t !  i ry  where neorr is the maximum number of particles in a "corridor" co i -- tol, with co~ a 
cube of side ] co ]1/~ _5 t concentric with c~,  and --q~ is the lower bound on the short- 
range interaction of any particle with all its neighbors, whose existence is a 
consequence of (3). By the method that gives (4.14) of I, it follows that the lower 
bound (47) is o(1 co 1), just like the other corrections we have considered. Using this 
lower bound, together with the corresponding result for the long-range component 
in (38) we obtain an upper bound on Zi(n ] 7): 

Zi(n [~7) ~< exp[--F0(n, co) -- n ~ nsw(ko-) + o(I co I)]/kT 
J 

(48) 

with Fo(n, co) defined analogously to (46). 
Our estimate for pi(n +) is obtained by substituting (45) and (48) into (40) and the 

result into (34): 

pi(n +) ~ exp{~(n + -- n-) -- Fo(n +, co) + Fo(n-, co') 

- (n+ - n - )  F, njwO~iD + o(I o~ I)]}/kr  
J 

(49) 
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This can be further simplified by using the definition of  the thermodynamic  free 
energy density f0 of  the reference system, which implies 

Fo(n, co) = r co J f0(n/[ co l) + o(I co l) 

Fo(n, co') = [ co' [fo(n/l co' 1) + o(I co' [) (50) 

= [co Jfo(n/I co 1) + o(I co I) 

where in the last line we have assumed that  the (13) limit is taken in such a way that 
t co' I/I co ] -+ 1 and also used the continuity of  the function f0 .  The compatibil i ty of  
the condit ion ] co' I/I col -+ 1 with our  earlier condit ion l co I t . . . .  --+ 0 is proved in 
(2.22) and (2.23) of  I. To  use (50), we note that  n+/r co ] -+ p+ in the (13) limit, and we 
now make  our  choice of  n-,  choosing it so that n-/I co I -+ p. Equat ion (49) then 
becomes 

3 
# 

(51) 

The  exponent  in (51) can be further simplified. By Taylor 's  theorem and the 
condi t ion  (10) defining p-  and p+, we have 

fo(P +) >~ fo(P) + (P+ --  p) fo'(P) -1- l(p+ _ p)2 ( kTC  --  2c 0 (52) 

where 
C ~ inf  {fs q- 2o~}/kT 

x~[p-,o +] 

which is positive, by (10). Also, since nj ~< 
have 

Z n~w(kij) ~ n + Z wO~ij) 
J J 

p+[~ + o(1)] 

(53) 

n + for all j ,  and w is nonpositive by (4), we 

(54) 

where the last line follows from (5) and 1(2.20). Using the estimates (52) and (54) 
in (51) and making use of  the condit ion/x = fo'(P) + c~p [Eq. (9)], we find 

pi(n +) <~ exp{--�89 I co I[C(p + --  p)2 + o(1)]} (55) 

To obtain an upper bound onpi(n-) ,  the analysis (in the case of  periodic boundary  
conditions) proceeds entirely as before. The analog of  (54) is 

njw(ki~) <~ n-  ~ w(kij) = (n-l] co [)[~ + o(1)] (56) 
J 5 

where the inequality obtains because nj >~ n-  for  all j ,  and so the analog of  (55) is 

pi(n-) <~ exp{--�89 E co ][C(p- - -  p)~ + o(1)]} (57) 

Thus, if t co I is large, the probability, calculated using the restricted grand canonical 
ensemble with/~ = fo'(P) + c~p, of  having either n + or n-  particles in the cell cot is 
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extremely small. Consequently, the corresponding factor Max~ prob(n~ = n + or n-) in 
the upper bound (30) for the escape rate h is extremely small if] co[ is at all large, 
and in fact approaches 0 rapidly in the (13) limit. 

5. T H E  K I N E T I C  F A C T O R  

The probability we have just been estimating is only one of the factors in our 
original upper bound (30) on A, the rate of escape from the configuration-space 
region R. To complete our estimation of A, we now consider the remaining factors in 
this upper bound which, when combined with (57) and (59), takes the form 

)t <~ M(kT /2zrm)  1/~ 2v ] co [~-a/" pmax exp[o([ co 1)1 

• [exp{--�89 [ oJ ] C(p + --  p)Z} + exp{--�89 [ co [ C(p - -  p-)2}] (58) 

The only factor remaining to be estimated is pmax, and we can deal with this by the 
method of Lieb. (~a,14) The formula for the local number density at a point rz, for the 
ensemble we are using, is 

p(r~) = ~ N(zN/N!) fa "" fa hR(~) e -v(e'/kT d% ... d~rN/SR(tz, [2) 
N = t  

(59) 

where ~ = {r~ ..... rN}, now representing a configuration for all N particles, 

z = e~/krA -~ (60) 

hR(~) = tl,, if ~ R (61) 
otherwise I ts  

and 

~R(iz, ~2) = ~" (zN/N!)  f ~  ... f ~  hR(~)e  -v(~'/kr d~ 
N = 0  

This formula for p implies the upper bound 

(62) 

p(r~) <~ ze r n~= ~ (zU' /N ' !) f "" f z  d~' hm(~:'){exp[--V(~')/kT]}/2R (63) 

where ~ is the upper bound on siN_2 v(r -- r~-) used in (49), N' means N -- 1, s ~' means 
{r~ , r~ ..... rN}, and 

hm(~')  =- I10 ifotherwisen- <~ ni' q- Si(rl) ~ n +, i =  1, 2 ..... N (64) 

with 

~(rl) ~ ~11~ if rzcoJ i  (65) 
otherwise ( u  
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and n( the number of points of ~:' within wi. The sum in (63) therefore exceeds the one 
in (62) by 

(zN/N!) f "" f ~ d~[hm(~) -- hR(~)] e -v(~,/k~ (66) 
N = 0  

For an upper bound, we restrict the integration to configurations for which 
hRl(~) > h~(~); that is, for which 

nl -= n- -- 1 and n-  ~ ni ~< n +, i = 2,..., M (67) 

where we have allotted the label 1 to the cell containing r~. The upper bound so 
obtained, when divided by ~R,  gives an expression analogous in structure to the one 
defining pa(n-), the only difference being that we now have p(n -  --  1) in place of 
p(n-).  It can therefore be estimated by the same method that we used in Section 4 for 
p~(n-), and the result, corresponding to (57), is 

Eq. (66)/3R ~< exp{--�89 [ ~o [[C(p- - -  p)2 -t- o(1)]} (68) 

since (n - - -1 ) / l  co [--+ p- in the limit specified in (13). Combined with (63), the 
estimate (68) gives us 

P(h) ~< zer 1 q- exp(--�89 / co ][C(p- - -  p)2 + o(1)]}) (69) 

so that p(r) is uniformly bounded in the (13) limit. 
We can now complete our estimation of the escape rate )~. Using (69) and 

the relation I s ] = M] co ] in (58), we obtain 

h <~ const- 1s ~o I-x/o exp(o t co 1) 

X {exp[--�89 I co i C(P + -- p)2] _}_ exp[--�89 ] oJ I C(p -- p-)2]} (70) 

Combining this with the last inequality in the condition 

l f2 I >~ 7-~ >~ I oJ J >~ r0~ln j s j (71) 

[which is the same as (13)], we conclude that 

2t = o(1) (72) 

Thus, by choosing suitable values of ] s J, ~', and J co ], we can make the rate of 
escape from the metastable state as small as we please. One should remember, however, 
that the condition (71) above implies y -+ 0, so that very small escape rates can only 
be achieved with Kac potentials of very long range. The machine computations by 
Andrews (Be) and by Griffith et al. (3b) provide some corroboration of our main result 
(72). 

6. R IG ID -WALL  B O U N D A R Y  C O N D I T I O N S  

In this section, we indicate how our previous analysis for periodic boundary 
conditions can be generalized to the more realistic case of rigid-wall boundary 
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conditions. If  the system is enclosed in a container with rigid walls at the boundary 
of ,c2, there may be a small proportion of cells near the walls in which the rate of 
nucleation per cell is much higher than in the interior. To allow for these, we generalize 
the derivation of the upper bound (30) by allowing for each cell separately, to obtain 

M 

?t ~ (kT/2rrm)l/~ 2v I co [1-1/~ pmax ~ prob(ni = n + or n-) (73) 
i = 1  

For a preliminary discussion, it is convenient to assume that the Kac potential has a 
cutoff, which, with 7 and ~ suitably scaled, can be expressed as a condition ~oO, r ) = 0 
for r > 7 -z. We distinguish two types of cell: "interior" cells, whose distance from 
the boundary of X2 is at least 7 -z, and "surface" cells, for which it is not. Then, we 
can use (73) by putting it in the form 

2~ 4 (kT/2zrrn) 1/2 2v I co I1-1/~ pmax[M~P1 + M2P21 (74) 

where M~ is the number of interior cells, M2 the number of surface cells, P~ an upper 
bound on prob(ni = n + or n-) for interior cells coi, and P2 an upper bound for surface 
cells. 

To find a suitable/ '1,  we can use the analysis given in Section 4 without modi- 
fication, obtaining 

e l  ~< exp{--�89 I co [[C(p + -- p)2 + o(1)1} + exp{--�89 ] co [[C(p- - -  0) 2 + o(1)]} (75) 

The simplest possibility for P2 is P2 = 1. If  we use this in (74), we obtain 5 

1/l ~21 ~< const �9 [M1. o(1) -}- M21/[ X21 (76) 

and since MJ[ f2 / approaches 0 when I f2 ] --, oo, we have, by (32) or (33), 

A/I f21 = o(1) (77) 

showing that the escape rate per unit volume can be made arbitrarily small, but it is 
not possible to prove )t itself small by this method. 

To prove that ;~ = o(1), we would like to find a P2 that is exponentially small 
for large ] co I , just as P1 is. We can adapt the analysis given in Section 4 to this case 
too. Even if wi is a surface cell, this analysis still applies forp~(n +) provided the equality 
in (54) is replaced by the inequality 

n + ~ w(kej) ~> (n+/I co I)[~ + o(1)l (78) 
J 

which is valid since the terms in the sum are nonpositive, and there are fewer of them 
if 094 is a surface cell. For pi(n-),  on the other hand, the analysis in Section 4 breaks 
down in general because (56) must now be replaced by 

n-  ~ w(k,j) ~< (n-/l co 1)[~' + o(1)] (79) 
J 

We are assuming that praax also stays bounded for surface cells. 



R igorous Treatment ot Metastable States in the van der Waals-Maxwell Theory 229 

where 

~' = limit of M~n leo t ~, w(kCj) 
J (80) 

2--Vc~ 

since for a cubical container s the minimum is achieved with co i at the corner of 
f2. Equations (78) and (79) do not depend on our earlier assumption that ~ has a 
cutoff; the only special assumption now is that ~ is spherically symmetric [for (80)]. 

There are two ways of using (79). One is to take p- = 0 so that n- = 0, and 
then it does not matter that we have ~' rather than ~ on the right-haud side. This can 
be done provided the condition (8b) is replaced by 

f o(X) + 2~ > O, x ~ [0, p+] (81) 

so that (10b) will hold with p- = 0. For  the Kac-Uhlenbeck-Hemmer model, the 
conditions (8a) and (81) can be satisfied at all temperatures below the temperature 
0.76T~ mentioned in Section 2. Whatever model we consider, however, the condition 
cannot be satisfied for any p greater than the one at B in Fig. 1, and therefore we 
cannot describe superheated liquid by this method. This asymmetry between liquid 
and vapor arises in our model because the effect of  the attractive Kac potential is to 
reduce the density of the system near a hard wall, thus tending to nucleate the vapor 
phase near the wall in a metastable liquid, but to inhibit nucleation near the wall in 
the vapor phase. A similar asymmetry is observed experimentally: it is more difficult 
to superheat a liquid than to supercool a vapor, because bubbles form easily at the 
interface between a liquid and its containerJ ~) (The homogeneous nucleation rates are 
small in both cases.) 

A second way of using (79), which does not require p- = 0, is to replace (10) by 
the stronger requirement 

fo(X) + 2o~ > [2p-/(p --  p-)](] a I -- [ cd 1), x e [p-, p] (82) 

> 0, x ~ [p, p+] 

If  this is satisfied, then even (79) is sufficient to give a satisfactory upper bound on 
p~(n-): this upper bound is once again of the form (57). 

7. S T A T I C  P R O P E R T I E S  O F  T H E  R E S T R I C T E D  E N S E M B L E S  

In this section, we indicate how to calculate analogs for thermodynamic func- 
tions, applying to the metastable state. We also prove a result relevant to the problem 
of the equivalence of ensembles, showing that in the restricted grand canonical 
ensemble with chemical potentialf0'(p) q- ~p, most of the systems have mean densities 
very close to p. 

We first consider the restricted canonical ensemble. The analog of the free 
energy F is defined by 

e-V"'m/kr = (A-vN/N!) J (a  "'" J f a  d~ e -v'e'/~r hR(~) (83) 
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where 

and 
= {rl .... , rN) 

t l  if ~ R h~(~) ~0 otherwise 

The free energy density in the limit defined in (13), 

fR(p) = lim[FR(N)/] s [], N/i ~ [ -+ p (84) 

can be evaluated by a modification of the method used in I. The modification is, in 
equations such as (4.19) of I, to replace Fo(ni, ~i), the free energy of ni particles in the 
cell eoi, by Fo(ni, o)i) -? G(ni, o)i), where G = 0 if p-[ co E < ni < p+[ co I and 
= -~ oe if not. This gives 

fR(p) ~- CE{fo(p) -t- g(p) + �89 ~} (85) 

where 

l0 if p - < x < p +  
g(x) ~- + oc otherwise (86) 

By (10), the expression in braces in (85) is a convex function of p, and since g(p) = 0, 
we obtain (~,15) 

fR(p) = f0(P) + �89 p c [p-, p+] (87) 

We have already referred to this result in the discussion at the end of Section 2. 
A similar calculation is possible for the restricted grand canonical ensemble. The 

analog of the grand canonical pressure is PR(tx), defined by 

eeR(")tal/kr-~ i et"~--FR(N)l/kr (88) 
N = 0  

It can be evaluated rigorously in the (13) limit, using the corresponding modification 
of the method of Gates and Penrose(l~); the result is 

lim P~(t~)/kT = max[/xp --fR(P)] ~ ~r.(/~) (89) 
P 

Thus, the restricted grand canonical pressure and the restricted free energy are related 
in just the same way as the corresponding unrestricted quantities. The mean density 
of particles in the restricted grand canonical ensemble is given by 

[exp(--PR(.)l g? ]/kT)] ~, Nexp 1~ [ /~N-  FR(N)]/kT I (N)~/I 1= 
N = 0  ) 

= ~P,@)/el~ = e~r,@)/O/~ + o(1) (90) 

To see this, we merely note that PR(t~) is a convex function of ~ whose limit ~rR(~) is 
differentiable at the values of~ given in (9) with p satisfying (8). Hence, the interchange 
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of the limit and the differentiation is justified. (1) In a similar way, we can relate the 
mean energy density in the restricted ensemble to the derivative of ( k T ) - l f ~  with 
respect to (kT) -~. 

Results such as (87), (89), and (90), showing that thermodynamic functions can 
be defined and calculated for the metastable state by methods analogous to the usual 
methods of equilibrium statistical mechanics, provide a partial demonstration that 
our definition of metastable states satisfies the condition mentioned after the three 
listed under (1)--that thermodynamics should apply to the metastable state. 

Related to this question of defining thermodynamic functions is the question of 
the equivalence of ensembles. In particular, we should like to show that the restricted 
grand canonical, canonical, and microcanonical ensembles give the same result not 
only for thermodynamic properties but also for the rate of escape from the metastable 
state. As a step toward demonstrating this, we shall prove that the restricted grand 
canonical ensemble with chemical potential given, as before, by/z ---- fo'(P) -+- ~P has, 
for any positive number 8, the property 

prob{! N/[ ~ r  -- P] > ~) = o(1) (91) 

indicating that almost all the systems in this ensemble have densities very close to p. 
In the restricted grand canonical ensemble, the probability that the system 

contains N particles is given, for any N1 ~ (p- ] ~ ] , p+ [ ~ [), by 

prob(N) = exp{[N/z FR(N) -- PR(/z)] ~ []/kT) (92) 

Writing N for the integer closest to p [ .(2 ], we deduce that 

prob(N~) ~ prob(N1)/prob(IV) 

---- exp([(N~ -- N)/z -- FR(N~) + FR(N)]/kT} (93) 

= exp{] f2 I[(pl -- p)t z --fR(Pl) -? fR(P) + o(1)]/kT} 

where p~ ---- NI/] ~ [ . Using the formulas (9) for/z and (87) forfR in (93) and (52) for 
the f0(pl) in the result, we obtain 

prob(N~) ~ exp(-- [.Q I[C(pi -- p)2/2 + o(1)]} (94) 

To estimate the probability in (91), we consider the two events N/[ ~ ! -- p > 3 
and N/[ .(-2 ] -- p < --8 separately. For the first of these, we have 

prob(N/[ g21 --p > 8) = ~ prob(N1), N~ > (p + ~)l s (95) 
N1 

Since 

NI=N 

if ~ is a decreasing function, and 

oo 

f exp(--Bt ~) dt < f (t/A) exp(--Bt 2) dt = [exp(--BA2)]/2AB 
A A 

82Z/3/z-9 
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the right side of (95) has, by (94), the upper bound 

oo 

( exp{-- i D ][C(p1 -- 0)2/2 + o(1)]} d(pl [ ~ J) 
d (o+8 )  19 ] - -1  

2t~? j  exp{--C(6 t D t --1)2/2 J C2 j -F o([ f2 J)} (96) < 
{(p + 6)1 (2J --1} C 

= [const -F o(1)] exp{-- ] D I[C62/2 -F o(1)]} 

= o ( 1 )  

In just the same way, we can show that prob(N/J ~O j --p < 6) = o(1), and the result 
(91) follows. 

We can use this result to relate the escape rate we have calculated to escape rates 
calculated in a canonical ensemble. If  )~(N) denotes the escape rate calculated in a 
canonical ensemble with N particles, and I the interval [(P -- 6)1 g2 J , (p + 6)1D j], 
then we have 

A = Z prob(N1) A(Nz) 
N 1 

> • prob(N1)A(N0 (97) 

min A(N1) " prob(N1 ~ I) 
Nx~l 

so that for at least one value of N in the interval I we have 

A(N) < A/[prob(N1 e I)] = ;~ + o(1) (98) 

8. T H E  P R O B A B I L I T Y  O F  R E T U R N  

To complete our justification for claiming that R describes a metastable state, we 
shall now argue that it has the third property of metastable states listed in (1): once 
the system has escaped from R, it is unlikely to return. To estimate the probability of 
such a return, we shall use the standard methods of (stable) equilibrium statistical 
mechanics. That is, to represent the final equilibrium reached by the system after it 
has left the metastable state, we shall use one of the equilibrium ensembles of statistical 
mechanics, and as our estimate of the probability of returning to the metastable state, 
we shall use the fraction of members of this ensemble that have configurations in R. 
This anaounts to assuming that a system whose dynamical state has just left R is no 
more likely to return to it than one whose dynamical state was never anywhere near R. 
The validity of this assumption, at least in the short run, is dubious, but at least it 
provides us with some indication of what to expect. 

I f  an ensemble of isolated systems starts in the metastable set R and eventually 
comes to stable equilibrium, then, since energy and particle number are constants of 
the motion, the final equilibrium ensemble will be characterized by the fact that its 
mean energy and particle number are the same as for the initial ensemble. Thus, the 
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natural way of calculating the probability of a return to R is from the formula of the 
microcanonical ensemble 

prob(return) = f ~ A(E -- H(X)) d Y / f  A(E -- H(X)) dX (99) 

where X is a variable over the phase space of an N-dimensional system, E and N are 
the initial energy and particle number, and A is defined by 

I1 if 0 ~<x < AE A(x) 
otherwise 

with dE a positive number, representating the tolerance in energy measurements, and 
satisfying AE/E = o(1). 

If, on the other hand, the systems after leaving the metastable state are not 
isolated but interact with a heat bath at temperature T equal to the temperature of the 
original restricted ensemble, then it is natural to use the canonical ensemble formula 

prob(return) = j e-U(x)/kr e-H(X)/kr dX (100) 

In this second case, the probability of return is easily shown to be very small; the 
standard formula (46) for free energy gives 

prob(return) = exp{ [ f  -- FR]/kT} 

= exp{] f2l[f(p, 0+) --fo(p) -- l~p2 + o(1)]/kT} (101) 

by (87) and the definition off(p,  0+) ;  then the condition (8a) shows that the quantity 
in square brackets tends to a negative value in the (13) limit, so that 

prob(return) = o(1) (102) 

Moreover, the probability of return is many orders of magnitude smaller than the 
probability of escape, since the former has a factor [ D] in the exponent, whereas 
the latter has only ] co j. 

A difficulty with this calculation based on (99) is that the device of connecting 
the system to a reservoir is not really consistent with our method of calculating escape 
rates, where the system was taken to be isolated. Accordingly, we also give a calcula- 
tion for isolated systems, based on the microcanonical ensemble formula (98). This 
formula can be written 

prob(return) ---- e[SR-S]/~r (103) 

where the entropies SR and S are defined by making eSa/k and eS/k equal to A-"n/NI 
times the numerator and denominator of (98). Just as in the calculation shown in 
(101), the probability in (103) will approach 0 in the triple limit if 

s(E) > s~(E) (104) 
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where s(e) and sR(e) are entropy densities defined by 

s(e) = limS/] f21, etc. (105) 

where S is the entropy of a system of N particles with energy E, and NIl f21 ~ p and 
Eli ~1 -+ e in the triple limit. 

Our demonstration of (104) is based on the thermodynamic formula 

s(e) = mrin {[e -- f (T) I /T}  (106) 

wheref(T) is the Helmholtz free energy density calculated at the same particle density 
as s(e). Equation (106) is a consequence of the facts that s(e) = [E - - f ( T 3 I / T  holds 
when T, is the temperature at which the energy density d(f/T)/d(1/T) is equal to e, 
and that - - f (T) /T  is a convex function of 1/T (its second derivative being T ~ times 
the specific heat). We shall assume without proof that (106) also holds for the 
"metastable" thermodynamic functions sR andfR.  

We distinguish two cases, according to whether the temperature T, defined 
above, which we call the final temperature, is equal to the corresponding temperature 
for sR andfR at the same energy, which we call the initial temperature. 

Case L Initial andfinal temperatures equal Here, using first (106), then (8), and 
finally the metastable version of (106), we obtain 

s(e) = [e --f(T,)I /T,  > [e - fR(T , ) I /T ,  = sR(e) (107) 

since the temperature at which (8) applies is the one we have called the initial 
temperature. 

Case 1I. Initial and final temperatures different. Here, using first (106), then the 
fact that the convex envelope construction used in (6)implies fR(T) /> f ( T )  for all T, 
and finally the metastable version of (106) remembering that T~ is now different from 
the temperature at which [E --fR(T)]/T is minimized, we obtain 

s(E) = [~ -- f(T~)I/TE >~ [E - fR(TE)I/T~ > SR(E) 

Thus, in both cases, (104) holds, and the rest of the argument proceeds as from (101). 

9. D I S C U S S I O N  

In this paper, we have shown that for a system with a long-range Kac potential 
it is possible to give a precise meaning to the statement that a system is in a metastable 
state. We have done this by finding a region R in configuration space which has, on 
the one hand, a small probability in one of the equilibrium ensembles and, on the 
other hand, a small escape rate ;~. This was made possible by the fact that, in the limit 
we are considering, the range 7-1 of the Kac potential becomes very large compared 
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with the other physical lengths, r 0 and iO -1/u. This permits a clean separation of the 
effects of the Kac potential from those of the short-range potential q. This separation 
is accomplished by introducing an artificial new length ]co ll/y satisfying the t w o  
conditions [both coming from (13)] 

l co I1/~ >~ p-a/.  In I D I , ] co 11/~ ~ ~,-1 (lO8) 

and defining R through constraints [Eq. (11)] on density variations over the length 
scale I o~ ]1/~. 

The first condition in (108) ensures that there are enough particles in each cell 
to make a fluctuation, from the average occupation number assumed in the metas- 
table state, violating the "constraints," an unlikely event in the restricted equilibrium 
ensemble, and hence enables us to prove that the escape rate is small. The second 
condition ensures that any phase transition due to the Kac potential is completely 
suppressed by the constraints, and hence makes the state defined by these constraints 
a very unlikely one in the full equilibrium ensemble, if this ensemble predicts such a 
phase transition. (On the other hand, the constraints have no effect on any phase 
transition that may be produced by the short-range part of the potential. If  a phase 
transition occurs in the absence of the constraints and of the Kac potential, at the 
mean density p, then it also occurs in their presence: because of the first condition in 
(108), each cell co:- will contain the two phases side by side.) 

Since both parts of (108) are crucial to our treatment of metastability, the result 
that A can be made as small as we please does not apply to real physical systems, for 
which there is no y --+ 0 limit. For  a realistic potential, it may well be impossible to 
find regions R which have both arbitrarily small escape rates and arbitrarily small 
equilibrium probabilities--particularly in view of the apparent impossibility of  
analytically continuing the equilibrium free energies and correlation functions for 
such potentials into the domain of metastability/7) In principle, however, it should 
still be possible to obtain some information from the theory in these cases. A realistic 
potential such as the Lennard-Jones potential could be arbitrarily separated into two 
parts according to the formula (2), with ~ = 1, and then the method of estimation we 
have used here could be used to calculate an upper bound on ~, which, though 
positive, might be small at suitable temperatures and densities, if the separation of the 
potential and the choice of l co I had been done skillfully. The difficulty with such a 
calculation is that all the quantities we have disposed of in this paper by writing 
O(1) or O(] co l) would now have to be estimated explicitly; since ~, would now be 
fixed, it would no longer be enough to know only the behavior of these quantities in 
the limit ~ -+ 0. 

The form of our upper bound on ) is roughly 1 g2 I e-~/~r, with A a positive 
"activation energy" proportional to Ico l .  Similar formulas for escape rates occur 
in other theories; for example, the Arrhenius formula for chemical reaction rates 
has this form, and so do the ones of Griffith et  al. <~b~ and van Kampen. ~3a) The main 
difference between these formulas and ours is that they are intended to be approxima- 
tions to the true escape rate, whereas ours is a rigorous upper bound, but not 
necessarily a good approximation. 
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